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In this report Bragg’s Law and the Duane-Hunt law will be used to determine a value of Planck’s constant.
A LEYBOLD 554800 X-ray apparatus will generate bremsstrahlung curves for different voltages and through
data analysis the minimum wavelength of the X-rays can be obtained. From this data the experimental value of
Planck’s constant is calculated to be 6.4± 0.5× 1034 Js which is within one standard error of the true value.

I. INTRODUCTION AND THEORY

During the early 20th century the discovery of X-rays by
Wilhelm Röntgen lead to the field of crystallography being
developed. Further study of X-rays lead to Bragg’s law
and the Dune-Hunt law being formulated. From these two
laws it was then possible to determine a value of Planck’s
constant.

In this experiment X-Rays are produced by accelerat-
ing electrons through a high voltage and colliding them
with a molybdenum plate, as the electrons decelerate, they
emit bremsstrahlung radiation (breaking radiation) along a
continuous range of wavelengths. This radiation is incident
onto a plate of sodium chloride crystal on a rotating mount
so the angle of incidence can be varied. The crystal allows
only certain wavelengths to reach the detector, which are
given by Bragg’s law:

λ = 2dsin(θ) (1)

with λ being the wavelength of incoming light, θ being the
angle of incidence and d being the distance between the
sodium and chlorine atoms in the crystal, which is 0.282
nm [1] (Bragg’s law describes a wave like property of light).
The wavelength at which counts are first detected is called
the minimum wavelength. The maximum energy of the
photon is that of the electron that created it (this is a par-
ticle like property), from this the Duane-Hunt law can be
derived:

λmin =
hc

eV
(2)

with λmin being the minimum wavelength, h being
Planck’s constant, c being the speed of light in a vacuum(

FIG. 1: Bremsstrahlung curves for different voltages

299800000 ms−1 [2]), e being the elementary charge con-
stant (1.602 × 10−19 C [2]) and V being the accelerating
voltage.

II. METHOD

In this experiment a LEYBOLD 554800 X-ray apparatus
was used. The devise was electronically controlled and was
set up to produce bremsstrahlung curves through the pro-
cess described in the theory section. Before the data was
collected for a given voltage a quick scan was performed
over a large angle range so that angle limits could be set
such that the detailed scan occurred across the linear region
of each curve. The highest input current was used (1 mA),
this increased the number of X-rays produced and hence de-
tected in a given time reducing the random error in count-
ing. The most precise plot was formed by using the smallest
angle division (0.1◦) and the scanning angle was converted
to wavelength through Bragg’s law Eq.(1). Three repeats
of the data were taken with each scan taking seven min-
utes, this allowed enough varied data to be collected in the
time given, background count rate was also recorded and
averaged. Using the linear region to determine the mini-
mum wavelength, Planck’s constant can be found by plot-
ting this against one over the accelerating voltage and using
the Duane-Hunt law. Most of the error analysis is done dur-
ing the data analysis and results section.

III. DATA ANALYSIS AND RESULTS

Taking the average of the three count rates for each of the
voltages and plotting against the incident wavelength gives
the bremsstrahlung curves shown in Fig.(1), the error bars
have been removed for clarity. The linear region shown in

FIG. 2: Linear region of each bremsstrahlung curve
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FIG. 3: Intersection of lines of best fit and background count rate

Fig.(2) was found by considering three distinct points on
each curve. The red point on each curve indicates that start
of the linear region, this is the first point that is two stan-
dard errors away from the background line (this shows sig-
nificant deviation from the background). The green point
approximates the point of inflection of the curve which is
where the graph has zero curvature and hence is linear. This
was calculated by considering the gradient of a specified
point:

f ′(xi) =
Ri+1 −Ri−1

λi+1 − λi−1
(3)

With xi being the specified point, i denoting the index of
the point, R denotes the count rate of a point and λ is the
wavelength of a point. The green point is the one that gives
a maximum value of f ′(xi) as this approximates the point
of inflection. The blue point represents the end of the linear
region of the curve. This point maximises the size of the
linear region whist maintaining a high correlation. Consid-
ering each point after the green point and applying

g(xi) = rαi s (4)

with s being the number of points considered after the green
point and rαi being the product moment correlation coeffi-
cient raised the the power α with ri given by

ri =
ΣλnRn − ΣλnΣRn

n√
[Σλ2

n −
(Σλn)2

n ][ΣR2
n −

(ΣRn)2

n ]
(5)

,with the sum going from the green point to the ith point.
This is a measure of correlation between 0 and 1 with α
being required so that it is costly if a new point decreases
correlation (a good value was found to be 400 by trial and
error). The point that gives the largest value of this is the
blue point. Best fit lines are then formed by performing
least squares regression on the red to blue region.

Fig.(3) shows the intersect between the lines found in
Fig.(2) and the average background count rate given by
5 ± 4s−1. The uncertainty in least squares regression from
Fig.(2) forms two further lines for each voltage. The wave-
lengths at which these intersections occur gives values and
uncertainties for the minimum wavelength for each voltage.

From the values of the minimum wavelength found
in Fig.(3) plotting these against one over voltage yields
Fig.(4). Using least squares regression, the gradient is given
as 1.21± 0.09 kVs−1. Using this and rearanging Eq.(2) we
get a value of Planck’s constant as 6.4± 0.5× 10−34 Js.

FIG. 4: Using the Duane-Hunt law to find Plank’s constant

IV. DISCUSSION

The true value of Planck’s constant is 6.63 × 10−34 Js
[2], the experimental value was 6.4± 0.5× 10−34 Js which
is within one standard error of the true value giving a good
agreement, this is a reliable result as in Fig.(4) four out of
five residuals lie within one standard error of the gradient.
The effect of random error in counting has been reduced
by averaging counts, extrapolating lines to the background
count rate and using a high current. Human error has been
reduced by developing an algorithm to find the linear region
of the curves, although α had to be found by trial and error
no bias is introduced as the same rules apply to each curve.
The experiment could most be improved by using equip-
ment with higher precision in angle and taking more mea-
surements around the ends of the linear region, this would
improve precision of the gradient hence lower the error of
Planck’s constant. The analysis could be improved by ap-
plying a weighted regression when finding best fit lines as
the error in count rate is non-linear. Using weighted re-
gression would also account for error in voltage and angle,
instead of just using the error given by least squares regres-
sion.

V. CONCLUSIONS

In this experiment Planck’s constant was determined by
using a computer-controlled apparatus to generate data for
bremsstrahlung curves at different voltages. Using data
analysis the minimum wavelength was found at each volt-
age. Planck’s constant was then found by the Duane-Hunt
law giving an experimental value of 6.4 ± 0.5 × 10−34 Js
which is within one standard error of the true value. This
could be improved with more precise angle measurement
and using weighted regression during analysis.
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VI. ERROR APPENDIX

Errors in this experiment include the limited precision of
the X-ray apparatus, having error on the angle and voltage
of one unit of the smallest division of the screen being 0.1◦

and 0.1 kV respectively. The constants of c and e are taken
to have zero error and are only shown to four significant
figures (as this is more than enough for the precision of the
experiment) and for d the error is too small to be considered.
The main source of error in the experiment was the number
of counts detected, this can be modelled as a Poisson distri-
bution with the uncertainty given by

√
N ,where N is the

number of counts [This equation and all the others in the
appendix are from the error equations found in I.G Hughes
and T.P.A Hase, Measurements and their Uncertainties, Ox-

ford University press, Oxford (2010) ]. To convert this to
error in count rate we use a functional error approach

αR = | 1

N
− 1

N +
√
N
| (6)

, this method is also used to determine the uncertainty in the
background count rate. The final error in Planck’s constant
is found by again using a functional error approach

αh = |e× gradient
c

− e× (gradient+ αgradient)

c
| (7)

, with the error in gradient given by the LINEST function of
Excel.
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