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Using Poiseuille’s Law, three values of the dynamic viscosity of water at 20.0◦C are obtained. Measurements
are taken by video analysis of the descent of water from a bottle connected to a capillary tube. The calculated
values obtained are 1.69±0.04 mPa·s, 1.48±0.04 mPa·s and 1.49±0.04 mPa·s with the accepted value being
0.954±0.001 mPa·s. Chi-squared analysis is performed to show that the measurements are invalid. The dis-
crepancy between measured and accepted values are due mostly to the large parallax error in the experimental
setup. Problems with the experimental design and possible improvements to the method are also discussed.

I. INTRODUCTION

Jean Louis Poiseuille, born 1799, was a French physician
trained in physics and maths, motivated to understand blood
flow through capillaries and veins, he developed what we
now call Poiseuille’s law which can be used to determine
the viscosity of a fluid [1].

In this work, three values of the viscosity of water are ob-
tained at 20.0◦C through video analysis of the flow of water
through a capillary tube. The values obtained are invalid
due to an oversight in experimental design.

II. THEORY
Laminar flow is characterised by adjacent layers of a

flowing fluid sliding over each other with no mixing. When
layers mix and vortices form, the flow is called turbulent.
Dynamic viscosity (referred to in this report as viscosity)
quantifies the resistance experienced by layers when sliding
over each other in laminar flow. In a Newtonian fluid such
as water, viscosity is independent of applied stress.

Poiseuille’s law relates the flow rate Q of a laminar New-
tonian fluid through a long, thin, horizontal tube of length L
of constant radius r to the pressure difference ∆p between
the ends of the tube,

∆p =
8ηLQ

πr4
(1)

with η being the viscosity [1]. Connecting one end of the
tube to an open container of water of constant cross sec-
tional area A and leaving the other end free to the atmo-
sphere it can be shown using Eq.(1) that

h = h0e
−αt (2)

with α =
πρgr4

8ηLA
(3)

with h being the height above the tube, h0 being the initial
height, α being the decay constant, t being time, ρ being the
density of water and g being local gravitational acceleration

The Reynolds number Re indicates whether a fluids flow
is laminar or turbulent, for the setup above it is given by [1]

Re =
2Qρ

ηπr
=

2αh0Ae
−αtρ

ηπr
(4)

. For laminar flow Re<2100 and for turbulent flow
Re>4000 [1]. Measuring the height of the water line against
time and fitting to

h = Ne−Mt (5)

by minimising the chi squared value (varying N and M ) al-
lows the determination of the initial height and decay con-
stant by comparison to Eq.(2). This can then be used to
determine the viscosity by Eq.(3).

FIG. 1: Apparatus used to measure viscosity via Poiseuille’s law.

III. METHODS

The setup of the apparatus is shown in Figure 1. A small
incision was made into a plastic bottle to fit a capillary tube
and blu-tack was placed either side to minimise leaking.
The capillary tube was fixed to a cardboard box to ensure
that it was horizontal and straight to satisfy the conditions
of Poiseuille’s law.

The distance measurements required to obtain the con-
stants in Eq.(3) were measured using the software GIMP.
The dominant error in Eq.(3) is the radius of the capillary
tube from the power of four dependence, the use of software
minimises this error.

A video camera was used to film the descent of the wa-
ter in the bottle. The height of the waterline was measured
at equally spaced time intervals using the software Tracker.
The experiments were performed in a well-lit space with
a clear background to maximise the quality of video. The
videos were stopped when droplets started forming at the
capillary tube as this indicates the presence of external sur-
face tension forces that are not accounted for in Eq.(1).

IV. RESULTS

Video DoF χ2
min χ2

ν P(χ2
min;ν)

1 229 1.021 0.00446 1.000
2 227 1.730 0.00762 1.000
3 212 1.488 0.00701 1.000

TABLE I: Goodness of fit statistics of the video data to the
exponential model.

Video Decay constant (m·s−1) Viscosity (mPa·s)
1 1.40 ± 0.03 1.69 ± 0.04
2 1.60 ± 0.03 1.48 ± 0.04
3 1.58 ± 0.03 1.49 ± 0.04

Theoretical 0.770 ± 0.008 0.954 ± 0.001

TABLE II: Results of measured values and theoretical prediction
of water at 20.0◦C.
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The temperature of the water measured using a Garmin
sports watch was 20.0 ± 0.05 ◦C. The evolution of the
height of the waterline for the first video is shown in Figure
2 alongside the theoretical predicted value at the measured
temperature. At this temperature the viscosity of water is
given as 0.964± 0.001 mPa·s and density as 997.77± 0.01
kg·m−3 [2]. The uncertainty in time and in the theoretical
model are too small to be visible. The curve shown in the
first video is similar for the other two repeats as shown by
Figure 3 with the plots being separated for clarity.

The quality of fit of the minimised chi-squared model for
each data set is shown in Table 1. From the decay constant
of the fit model and Eq.(3), the value of the viscosity of
water at 20.0◦C has been calculated and compared to the
predicted value, as shown in Table 2.

V. DISCUSSION

The reduced chi-squared values shown in Tab.1 are sig-
nificantly less than 1 showing that the exponential model
Eq.(5) fits the data very well. This is visually confirmed in
the subplot of Fig.2. However, these values are too small
indicating that further investigation into errors is required.

The P values shown in Tab.1 are very close to 1, implying
that the discrepancies between the model and data cannot
explained by random statistical error. This indicates either
overfitting of the model or overestimation of errors [3]. This
is not due to overfitting as there are only two fit parameters
and high degrees of freedom.

The main cause of the decreasing error bars in Fig.2 is
parallax error. The point at which the water level is parallel
to the camera is marked with a vertical line in Fig.3. The
normalised residuals have peaks around this point as devi-
ations become prominent for smaller error bars. Beyond
these lines residuals seem offset from 0 , this could be due
to Tracker measuring the water line at the back of the bottle.

All the normalised residuals in Fig.3 are less than one so
are not normally distributed. The Durbin-Watson statistic
D quantifies the non-random spread of normalised residu-
als [3]. For the first video, D is 0.061. This is close to
0, implying systematic correlation. This could be due to
Tracker selecting the next measurement by searching in a
small region around the current measurement, leading to
non-independent errors.

Using Eq.(4) the maximum Reynolds number occurs at
t = 0. For the first video this is Re = 765 < 2100, demon-
strating the flow is laminar. Variation observed at the end
of the residuals plots could be explained by surface tension
inducing additional affect.

FIG. 2: Height drop of the waterline against predicted value at
20.0◦C, the dotted lines indicate uncertainty at each point.

FIG. 3: Exponential decay of water height in the bottle with the
zero parallax position marked, the normalised residual axis has

height of 0.2 standard errors.

Visually, the theoretical value and the measured value do
not agree as shown in Fig.2. From Tab.2 no measured result
of the viscosity is consistent with the accepted value. The
decay constants in Tab.2 have small errors despite the large
visible error bar on each data point. This could be because
the model is exponential and there are many data points,
hence the chi-squared value only requires a small change to
increase by one.

Although the sampling rate was increased by using video,
the method introduced large parallax error. This invalidated
the result of the decay parameter leading to unreliable val-
ues of viscosity of water. To minimise parallax, readings
could have been taken by eye, parallel to the water level
with a stopwatch. An alternative approach would be film-
ing with a better-quality camera from a greater distance so
parallax is reduced and the height could still be tracked ac-
curately.

Further improvements to consider include the use of
higher quality capillary tubes to ensure the diameter re-
mains constant, and to prevent the formation of bubbles in
the tube. Replacing the bottle with a large glass burette
would ensure constant cross-sectional area, although the
significance of the ridges in the bottle was not clear from
the data. These are minor in effect in comparison to de-
creasing the error in parallax.

VI. CONCLUSIONS

In this experiment, three values of the viscosity of water
at 20◦C were obtained using Poiseuille’s Law and comput-
erised tracking software. The measured data fit the expo-
nential model well, however, large errors caused by parallax
of the camera invalidate the values of viscosity obtained.
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VII. ERROR APPENDIX

Uncertainty in height: In the determination of the error
of a single height measurement, it is assumed that the error
in video time and calibration of the distance in Tracker are
negligible. The uncertainty in time is based on the frame
rate of the camera. The camera used filmed at 29.46 fps.
The error of this is half the time of one frame giving 0.02
seconds, and the error from calibration would be less than
a millimetre. On the scale of the height and time measure-
ments, these can be ignored.

Parallax error was introduced as measurements were not
made in the same plane as the water line. The parallax error
αpara was calculated by considering the similar triangles
formed by the setup as shown in Figure 4 giving:

αpara =
Dbothscaled

L′
(6)

where L′ is the distance from end of camera to start of bot-
tle, Dbot is the diameter of bottle and hscaled is the height
from camera to waterline

The other two important errors were the uncertainty in
water height position αpos given by the standard error of
multiple runs of the same video, and uncertainty in axis
placement in Tracker αaxis given by 0.1 cm. The total error
in height for a single measurement is thus [3]

αheight =
√
α2
pos + α2

axis + α2
para (7)

.

FIG. 4: A sketch of the setup showing parallax error.

Uncertainty in viscosity: The Nelder-Mead method of
optimisation was used to obtain convergence of the min-
imised chi-squared parameters. Techniques based on gra-
dients failed to converge, potentially due to the large num-
ber of data points coupled with the use of the exponential
model.

To obtain errors on parameter values, a series of orthog-
onal steps were taken on the error surface as described
in ‘Measurements and Their Uncertainties’ Chapter 6 [3].
This gave the errors shown in Tab.2 which can be visu-
ally confirmed to be true by observation of the height of
the χ2

min + 1 contour in Figure 5.
The error in tube length, tube radius and cross-section

area of the bottle were calculated by taking the standard er-
ror of multiple readings. The constant radius of the tube
was estimated by calculating half the average of the front
and back diameters of the tube. The error in viscosity was
then found by applying the functional method of error anal-
ysis to Eq.(3) [3].

FIG. 5: Heat map of the χ2 function for video 1 with contours at
1,2,3 σ away from the central dot at the minimum (0.175,1.40).
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