
Application of Markov Chain Monte Carlo Algorithms in Solving Feynman Path Integrals

R. Smith; supervised by Dr. C. Zambon
L3 Computing Project (Group C1)

Submitted: March 11, 2022, Dates of investigation: 12/10/2021 - 22/02/2022

Richard Feynman in the 1940s reformulated quantum mechanics in terms of Feynman path integrals. Markov
Chain Monte Carlo (MCMC) algorithms provide an efficient way to solve Feynman path integrals numerically.
In this paper we visualise and discuss the action of five MCMC algorithms. Then we use the random walk
Metropolis (RWM) algorithm and the Hamiltonian Monte Carlo (HMC) algorithm to generate the probability
distribution of a particle in a one dimensional harmonic potential well. The RWM performs better than the HMC
algorithm. We see reasonable agreement with the Schrödinger solution in the RWM case despite systematic
error. The advantages of HMC are minimised due to the reduction in the exploration period by initialising the
path at classical solution. We conclude with future areas for research.

I. INTRODUCTION

In 1942 for his PhD thesis titled “The Principle of Least
Action in Quantum Mechanics” Richard Feynman intro-
duced the concept of path integrals to reformulate conven-
tional quantum mechanics in terms of the action principle
[1]. Path integrals are important in understanding quan-
tum field theory and allow us to solve problems in quan-
tum chromodynamics (QCD) (for example the forces in
multi-hadron interactions) which are inaccessible by other
methodologies [2].

In this work we explore the use of Markov Chain Monte
Carlo algorithms in order to solve these integrals numeri-
cally. We start by investigating five different sampling tech-
niques on a simplified problem. Then we compare the Uni-
form Random Walk Metropolis method to the Hamiltonian
Monte Carlo method for use in calculating the ground state
probability distribution of a one dimensional harmonic po-
tential well. We conclude (in the case that we know the clas-
sical solution) that the random walk method gives a more
accurate result. Not considering a small enough time step
in our calculation causes large systematic error in our final
result. Finally we conclude with areas for further research.

II. THEORY

Path integrals are a generalisation of the principle of least
action in classical mechanics where we consider the contri-
bution from all possible paths in the final result. The prob-
ability amplitude of propagating from one position eigen-
state to another is related to the path integral formulation
via Eq.(1), where xf , xi are the position vectors at the fi-
nal and initial states, tf , ti are the final and initial times, Ĥ
is the Hamiltonian operator,

∫
Dx(t) represents the integral

over all possible paths and S̃[x] represents the action across
each path considered.

⟨xf | e−Ĥ(tf−ti) |xi⟩ =
∫

Dx(t)eiS̃[x] (1)

The ‘numerical sign problem’ is encountered due to the
highly oscillatory exponential in the RHS in which large
numbers of evaluations are needed to observe meaningful
results [3]. To prevent this we perform a Wick rotation in
which we transform our time variable as t −→ −iτ where τ
is our new time variable. This changes the action S̃[x] to the
total energy across the path S[x] shown in Eq.(2) [4]. This
is standard practice when evaluating these integrals [4].∫

Dx(t)eiS̃[x] Wick−−−→
∫

Dx(t)e−S[x] (2)

The probability distribution for a particle in a one dimen-
sional harmonic potential well is found by fixing the start
and end positions and letting T = tf − ti go to infinity
shown in Eq.(3) with x the position, E0 the ground state
energy and the far right term being the probability distribu-
tion [4].

lim
T→∞

⟨x| e−ĤT |x⟩ ∝ | ⟨x|E0⟩ |2 = |Ψ(x)|2 (3)

To make this problem numerically solvable we make the
following approximations. We discretise time into small
time steps, we consider large values of T and a large but
finite number of paths. Using these assumptions Eq.(3) be-
comes Eq.(4) where ∆t is the time step and S[x] is now the
discretised total energy summed across each path.

|Ψ(x)|2 ∝
∑
paths

e−∆tS[x] (4)

For example over nine seconds we discretise time to one
second intervals producing ten lattice nodes that can vary
in position. Fig.1 shows an example of paths that can be
generated on this space.

The probability distribution function can be considered
proportional to the average position across all of the paths
[4]. If we sample paths in proportion to the weighting term
shown in Eq.(5) where P [x] is the probability of selecting
the path, then we can plot a histogram of how many points
in every path lie in a certain range of x values. This his-
togram will be proportional to the probability distribution
[4].

P [x] ∝ e−∆tS[x] (5)

FIG. 1: Propagation of four possible paths over ten lattice points

1

R. Smith Application of Markov Chain Monte Carlo Algorithms in Solving Feynman Path Integrals

The classical path of least action is a stationary point so
looking at the RHS of Eq.(1) we see that paths close to this
have slowly varying phase factors. These paths coherently
combine and form a large contribution to the final result.
Paths away from the classical path have rapidly varying
phase, meaning their contribution will cancel out on aver-
age. Eq.(5) is related to this idea as paths near the least
action have low energies and so will be selected more fre-
quently and therefore have greater contribution to the prob-
ability distribution.

III. NUMERICAL METHODS

Sampling according to a distribution is a frequent prob-
lem in Bayesian statistics. When reading literature it is
common that our weighting term be called the target dis-
tribution or posterior [5].

Markov Chain Monte Carlo (MCMC) algorithms are effi-
cient ways of sampling a distribution. Here Monte Carlo in-
dicates that the procedure uses random numbers. A Markov
chain is a sequence of distributions, with the next distribu-
tion only depending on the current distribution [5]. This is
important in our case as the next path can use the informa-
tion of the current path to move towards the area of interest.

A stationary state of a Markov chain is where the next
distribution and all future distributions are identical to the
current one. We wish to generate a Markov chain such that
the stationary state is the weighting term of Eq.(5). The
Metropolis algorithm is an implementation of this proce-
dure, a complete description of this is found in B. Puza
‘Bayesian Method for Statistical Analysis’ (2015) [5].

The flow chart for this procedure is shown in Fig.2, where
f(x) is our weighting function, xi and xi+1 are the current
and next path and η is a randomly generated number be-
tween 0 and 1. The basic idea is as follows: propose a
new sample based off the current point. If this sample in-
creases the value of the weighting then move to this point.
If not then there is a probability that we reject this point.
This holds for symmetric proposal functions like uniform
or Gaussian (discussed later). For asymmetrical proposals
there is a slight modification of the acceptance criteria [5].

MCMC algorithms are efficient at exploring the target
distribution however the whole space is usually not explored
in a sparse and multi-modal distribution as the algorithm
will get stuck at one of the peaks.

From the Markov property each new path generated will
be correlated with the previous path, correlation between
time separated points is called autocorrelation [5].

FIG. 2: Flow chart describing one iteration of the Metropolis
procedure with weighting function f, current path xi and η being

a random number between zero and one

Autocorrelation affects error calculations, convergence
and goodness of fit calculations. For results to be reliable
autocorrelation must be reduced [5]. A burn in period is
required as initially we are not sampling in the stationary
state. The burn in period is the number of path discarded
before reaching convergence.

A. Random Walk Metropolis

In the random walk Metropolis algorithm (RWM or
URWM) the proposal is a uniform distribution around the
current point in a limited range. To visualise the evolu-
tion of the paths, we use a simplified target space equiv-
alent to paths with only two nodes (this is called the test
potential). In all graphs showing the 2D contour plot the
weighting term being used is an elliptical Gaussian. The
colour scheme of the contour is such that the white area
outside the final ellipse is close to zero not close to one as
the colour bar would imply, this is done for clarity.

We can see the time evolution of the RWM algorithm at
various starting points for 1000 time steps in Fig.3. At 10
steps all paths are sampling in the sparse areas of the target
distribution and are in the exploration phase, at 100 steps all
but the red path have reached the areas of interest and after
1000 steps they have all reached the peak. This emphasises
the need for a burn in period as during the exploration phase
paths sampled are not representative of the whole target dis-
tribution.

To reduce autocorrelation we introduce a reducing fac-
tor Ncorr such that we only sample one in every Ncorr many
paths. Ncorr and the burn in period are found using trace
plots and autocorrelation plots. Fig.4 shows these plots for
Node 1 for the five paths of Fig.3.

We visually check convergence is reached when every
path varies around a fixed position (in our case zero). The
same plots are also be considered for Node 2 and once all
nodes reach convergence the paths have converged.

FIG. 3: Evolution of the random walk Metropolis algorithm for 4
different initial positions with a 2D elliptical Gaussian target

distribution over 1000 time steps

2

R. Smith Application of Markov Chain Monte Carlo Algorithms in Solving Feynman Path Integrals

FIG. 4: A trace plot with the dashed line showing convergence
point and autocorrelation plots with 5% confidence interval

highlighted for a node in the random walk Metropolis algorithm

In this paper the burn in period is calculated before Ncorr.
The Gelman-Rubin diagnostic uses multiple chains (paths
starting at different points) to derive a quantitative measure
of the convergence, when this value is 1.00 we can consider
the paths converged [6]. This point is shown as the black
dotted line in Fig.4.

Lag is the delay between time series data. Visual inspec-
tion of lag plots identify if we have autocorrelation as shown
in Fig.4. The purple shading shows the 5% confidence in-
terval of no autocorrelation. Ncorr is increased until lags
greater than 1 are in this region removing the Markovian ef-
fect from the data [5]. High Ncorr numbers are inefficient as
more iterations of the algorithms are needed to obtain paths
that are used.

The Gaussian random walk Metropolis (G-RWM) re-
places the uniform distribution with a Gaussian distribution
centred at the previous point. The evolution of this and all
algorithms considered in this paper are shown in Fig.8.

The acceptance rate is the number of paths accepted di-
vided by the number of paths proposed. The ideal accep-
tance rate for a 2D Gaussian target distribution is approxi-
mately 0.5, decreasing to approximately 0.3 for a high di-
mensional Gaussian target distribution [7].

In both cases we have a single tuning parameter σ which
controls either the uniform range or the Gaussian variance.
If σ is too small, the acceptance rate will be high and suc-
cessive samples will explore the target distribution space
slowly. If σ is too large, the acceptance rate will be very
low because the proposals are likely to land in sparser re-
gions. In either case, the convergence will be slow.

B. Slice

Slice sampling is a way of sampling from the target distri-
bution without using the Metropolis procedure [8]. The pro-
cedure is given in Fig.5. From the current point we sample
vertically between zero and function evaluated at this point.
Then we expand horizontally outwards in width W from

this position until we lie outside the distribution. The new
point is then found by uniformly sampling from this slice.
If the sample lies outside the curve we move the boundary
to this point. In Fig.5 we form a 1D slice but in general we
perform hyperrectangle expansion in the dimension of our
target distribution.

This algorithm has one tuning parameter W. The disad-
vantage of slice sampling is when applying to an asymp-
totic target distributions (which we are in this paper) we can
sample from very sparse regions causing numerical round-
ing errors leading to divergence.

C. Langevin

Langevin sampling is a modification of the random walk
process which makes use of the structure of the target dis-
tribution space [9]. The evolution is given by Eq.(6)

xi+1 = xi + τ∇logf(xi) +
√
2τN (µ, σ2) (6)

were τ is the tuning parameter and N (µ, σ2) is a Gaus-
sian noise term. The noise term introduces random walk
behavior and the gradient of the negative log of the weight-
ing function acts as a drift term pushing the path into the
areas of interest.

The optimal acceptance ratio for a Gaussian proposal is
0.574 [9]. This analogous to a particle in Brownian motion
where we have a drift velocity and random fluctuations. In-
terestingly the Langevin equations that governs the behav-
ior of Brownian motion can be reformulated in terms of path
integrals [10].

D. Hamiltonian Monte Carlo

Developed for lattice QCD calculations Hamiltonian
Monte Carlo (HMC) aims to reduce the random walk be-
havior of the previous methods. Each path follows a trajec-
tory through the target distribution space based of Hamil-
tonian dynamics, with each path conserving energy as it
moves. The exact procedure is described in original paper
S. Dune et al. ‘Hybrid Monte Carlo’ (1987) [10]. There are
two tuning parameters a path length and a step size.

An analogous situation describing how this works is a
marble in a bowl. The marble’s x, y, coordinates make
up nodes of the path and the bowl is the negative weight-
ing function (the mound turns into a bowl). The next path
is found by flicking the marble in a random direction and
tracking its motion for a set distance around the bowl.

FIG. 5: One iteration of the slice sampling algorithm on a 1D
weighting function

3

R. Smith Application of Markov Chain Monte Carlo Algorithms in Solving Feynman Path Integrals

FIG. 6: Initial three trajectories of the path in a 3D representation
of the Hamiltonian Monte Carlo algorithm on an elliptical

Gaussian

The first three trajectories are shown in Fig.6 in 3D and
the first six trajectories are shown in 2D in Fig.7(a). The
path position is stored before introducing a new flick into
the system. Fig.7(b) shows normalised kinetic energy (re-
lated to conjugate momenta) and potential energy (related to
weighting value). This is done for clarity as each flick has
different total energy. Discontinuities are seen every 100 it-
erations as we introduce a new flick, this number is a tuning
parameter. Compare the energy plots in Fig.7(b) to Fig.6.
When we lose height on the 3D plot, we gain kinetic energy
such that the total energy of the system is conserved.

Initially energy conservation is violated. When traveling
over large distances the integrator used to solve Hamilton’s
equations cannot sample enough points, leading to com-
pounding errors. The optimal acceptance ratio is 0.65 for
a multivariate Gaussian distributions [12].

IV. RESULTS AND DISCUSSION IN MODEL TESTING

Evolution of all algorithms are shown in Fig.8. Conver-
gence and Ncorr were evaluated as in the RWM case. Each
algorithm was tested with 10 chains, with convergence de-
termined by the Gelman-Rubin diagnostic along side visual
inspection of all trace plots. Ncorr was also determined by
visual inspection of the autocorrelation plots for all nodes.
Parameters of each algorithm were tuned such that the ac-
ceptance ratio was the theoretical optimum shown in Tab.1.
In this paper, values of Ncorr and burn in period are upper
bounds of the true value. As this is the case, they are shown
without errors. These numbers give no autocorrelation and
converge in all trial tests.

The RWM has the largest burn in period and Ncorr due
to its limited travel distance. It is the most inefficient algo-
rithm generating few used paths.

TABLE I: Markov chain statistics for the two node testing case
for the five MCMC algorithms

Algorithm Burn-in Ncorr Acceptance
RWM 600 200 0.50

G-RWM 500 120 0.50
Slice 200 3 -

Langevin 320 40 0.57
HMC 40 2 0.65

FIG. 7: (a) Initial six trajectories of the Hamiltonian Monte Carlo
algorithm on the 2D projection of Fig.6. (b) Evolution of

normalised kinetic, potential and total energy for the trajectories
in (a)

The Gaussian variant performs slightly better, requiring
less burn in and Ncorr as it can sometimes take large jumps.

Slice sampling is a powerful tool when it converges. We
can see from Fig.8 it reaches the area of interest in very few
steps. The acceptance cell in Tab.1 is blank as this algorithm
does not use the Metropolis procedure. As we increase the
dimension of the asymptotic weighting term, the divergence
becomes more likely.

Langevin is an improvement on the random walk algo-
rithms. The simple gradient modification greatly increases
convergence rate as seen in Fig.8. The drift term increases
the number of samples accepted, which increases autocor-
relation, giving the large Ncorr value.

HMC has increased efficiency by reducing the random
walk effect. Autocorrelation and burn in period are the
smallest. However it is the most computationally expensive
and uses two tuning parameters creating more trial runs.
Now we consider the simple inefficient algorithm (RWM)
and complex efficient algorithm (HMC) on a 1D harmonic
potential well.

FIG. 8: Evolution of five different MCMC algorithms on an
elliptical Gaussian target distribution

4

R. Smith Application of Markov Chain Monte Carlo Algorithms in Solving Feynman Path Integrals

V. RESULTS FOR APPLIED CASE

Calculations were performed using 10 lattice points
equivalent to 9 time steps. Initial position of all paths were
set to zero (the classical solution). The simulation was set
up to gather 10,000 paths from each algorithm. Trial runs
were used to set tuning parameters, determine burn in pe-
riod, find the Ncorr value and to check convergence. A com-
parison of the RWM and HMC algorithms are shown for a
1D harmonic potential well in Fig.9(a). This plot is formed
from connecting the mid points of 40 histogram bins. This
was found to produce a smooth curves for both algorithms,
the analytical Schrödinger solution is also plotted.

The trace plots for the 5th node are shown in Fig.9(b)
along side the trace plot histograms. The trace plots are
considered after the burn in period. A visual inspection of
trace plots for all nodes was used to assess convergence.
The autocorrelation plots with the 5% confidence interval
highlighted is shown in Fig.9(c).

The errors at each lattice point are calculated using the
bootstrap method (see in Error Appendix) with 100 new
data sets generated. The goodness of fit statistics: reduced
chi squared, chi squared p-value and the Durbin Watson
statistic are shown in Tab.2. The Durbin Watson statistic
is a measure of correlation within the residuals with a value
of 2.00 representing randomly distributed Gaussian resid-
uals [13]. All goodness of fit statistics have no associated
error as we perform our calculation on a single long run.

Further diagnostics of such as the Ncorr value, burn in pe-
riod and generating time are given in Tab.2, these values
were calculated during the trial runs whilst tuning the pa-
rameters. Generating time is given by Eq.(7) and is a mea-
sure of the relative speed of generating a used path. The
standard error associated with generating time is ±0.02 s
which is calculated over the trial runs. Lower generating
time implies a faster generation of the desired distribution.

A comparison of the different Markov chain diagnostics
for the two different potentials are shown in Tab.3. Here
the test potential is the elliptical Gaussian with two node
points where we start chain at random positions. The Poten-
tial well is the 1D harmonic potential with ten node points
where we start the chains at the classical solution centred at
zero.

Generating Time =
Run time × Ncorr

Number of iterations
(7)

.

VI. DISCUSSION FOR APPLIED CASE

A visual inspection of Fig.9(a) shows that the random
walk algorithm is closer to the Schrödinger solution than the
Hamiltonian model. The reduced chi squared values given
in Tab.2 show confirmation of this as the RWM is closer to
1 [13].

From the chi squared p-values we question the null hy-
pothesis (that the model fits the data) for RWM and reject
the null hypothesis for HMC [13]. Incorrect bootstrapping
errors can cause this p-value to be inaccurate however in-
creasing the number of bootstraps by a factor of ten does
not change these statistics. This error is due to systematic
or random error.

FIG. 9: (a) Probability distributions by random walk Metropolis
and Hamiltonian Monte Carlo for a particle in a 1D harmonic
potential well together with the analytic Schrödinger solution

which is not visible due to overlap (b) Trace plot with histogram
plot after burn in period for one node (c) Auto correlation plot

with 5% confidence interval highlighted for one node

The residuals in Fig.9(a) in both cases look randomly dis-
tributed around 0 which is confirmed by the Durbin Watson
statistic. In both cases the statistic is around 2 implying
our residuals are randomly distributed in a Gaussian distri-
bution. If this assumption is violated then the error bars
are likely underestimated leading the incorrect conclusions
about statistical significance [13].

Fig.9(b) is representative of all the other nodes trace
plots. Here we observe the position varying around 0 with
constant variance over the 10,000 iterations. The histogram
in Fig.9(b) shows us that in both cases the positions are nor-
mally distributed, showing we have reached convergence.
During trial runs the Gelman-Rubin statistic is used to de-
termine Ncorr and burn in period, these are then used when
generating the large trials.

TABLE II: Goodness of fit statistics and Markov chain statistics
for potential well case

Statistic RWM HMC
χ2

reduced 1.14 1.96
χ2 p value 0.03 0.00

D-W 1.80 2.14
Ncorr 20 4

Burn in 4000 200
Generating Time (s) 0.10 0.01

TABLE III: Comparison of the random walk Metropolis and
Hamiltonian Monte Carlo Markov chain statistics between the

two potentials

Trial Test potential Potential well
Algorithm RWM HMC RWM HMC

Ncorr 200 2 20 4
Burn in 600 40 4000 200

5

R. Smith Application of Markov Chain Monte Carlo Algorithms in Solving Feynman Path Integrals

Fig.9(c) shows that to 5% significance there is no auto-
correlation in our samples with their corresponding Ncorr
values. This increases confidence in our test statistics.

The resulting error is unlikely to be only random error
as we have reached convergence, minimised autocorrelation
and checked bootstrap errors. Systematic error is likely as
we have only considered 10 node points. 10 points were
considered to give reasonable computation time. Increasing
the number of node points would have have increased the
accuracy of the results but at the cost of higher computation
time.

In the test potential and the potential well case we see that
Ncorr for HMC is less than RWM shown in Tab.3. Ncorr in-
creases between the test potential and potential well in the
HMC case but decreases in the RWM case. This is unex-
pected as we expect Ncorr to increase with the number of
lattice points [4]. Different potentials are used in each case
and importantly the starting path is the classical solution in
the potential well case. This reduces the exploration period
of RWM minimising the advantage of the HMC.

There is a much larger burn in increase in proportion to
the Ncorr when going from the test to the potential well in
the RWM case. This is due in part to the decreasing optimal
acceptance ratio for RWM from 0.5 to 0.3 which increases
the number of samples that are rejected, inducing a larger
burn in [7].

The generating time in Tab.2 show RWM is faster than
HMC despite having to sample five times as many points to
gather a single uncorrelated sample. This is because each
loop of the HMC is very computationally expensive.

Despite HMC having many advantages over RWM in
terms of convergence and autocorrelation it produces a
worse fit and is slower than RWM. In the potential well
case, the advantages of HMC are minimised as we are start-
ing at the classical solution. The important lesson from this
is that we should start to consider new algorithms only if our
original is struggling to converge or is slow to run. For more
complex potentials with more nodes and in higher dimen-
sions as in QCD HMC becomes a more viable algorithm.

VII. CONCLUSIONS

The main goal of this paper was to investigate ways of
solving the Feynman path integral for a 1D harmonic po-
tential well. We discussed five different MCMC algorithms
on a simplified problem calculating their burn in period and
Ncorr values. The random walk Metropolis algorithm was
found to be the most inefficient and the Hamiltonian Monte
Carlo algorithm initially designed for use in solving lattice
QCD problems was found to be the most efficient.

These were tested on the harmonic potential well and it
was found that the RWM performed better than the HMC.
This was due to starting at the known classical solution of
the harmonic potential well, eliminating the need for an ex-
ploration period, minimising the advantages of the compu-
tationally more expensive HMC.

We found systematic error in the results caused by the
large time steps used, increasing number of time steps
would increase computation time.

In a further investigation, the method could be improved
by increasing the number of time steps considered. The
simulations in this paper were performed on a Raspberry
Pi Model 4B, increasing computational power would al-
low for larger and more accurate simulations. Techniques
to increase computation speed should be investigated such
as multi threading and JIT compilers in which the com-
putationally expensive for loops of HMC are precompiled
into machine code allowing for much faster iterations, this
would potentially minimise the speed difference between
HMC and RWM [14]. More complex potentials could be
studied and the number of dimensions increased to per-
form simple lattice QCD calculations [4]. Further adaptive
variants of the algorithms discussed could be considered.
In these, parameters are tuned dynamically during the run
greatly reducing the number of trial runs [15]. A power-
ful algorithm to consider is the Riemann Manifold Hamil-
tonian Monte Carlo which further exploits the curvature of
the target distribution space leading to even faster conver-
gence [16].

[1] R. P. Feynman, ‘The Principle of Least Action in Quantum
Mechanics’, Laurie M. Brown (ed.), Princeton University
(2005).

[2] W. Detmold and M. J. Savage, ‘Method to study complex sys-
tems of mesons in lattice QCD’, American Physical Society
(2010), Phys. Rev. D 82, 014511

[3] S. Chandrasekharan and U. J. Wiese, ‘Meron-Cluster Solu-
tion of Fermion Sign Problems’, American Physical Society
(1999), Phys. Rev. Lett. 83, 3116

[4] G. P. Lepage, ‘Lattice QCD for Novices’, World Scientific
(2000), arXiv:hep-lat/0506036v1

[5] B. Puza, ‘Bayesian Method for Statistical Analysis’, 2015
ed., Australian National University (2015)

[6] A. Gelman and D. B. Rubin, ‘Inference from Iterative Simu-
lation Using Multiple Sequences’, Statistical Science (1992),
VOL. 7 · NO. 4

[7] G. Roberts et al., ‘Weak convergence and optimal scaling
of random walk Metropolis algorithms’, Annals of Applied
Probability (1997), VOL. 7 · NO. 1

[8] R. M. Neal, ‘Slice Sampling’, Annals of Statistics (2003),
VOL. 31 · NO. 3

[9] G. O. Roberts and R. L. Tweedie, ‘Optimal scaling of discrete
approximations to Langevin diffusions’, Royal Statistical So-

ciety Series B (1998), VOL. 60 · NO. 1
[10] A. K. Das et al., ‘A path integral approach to the Langevin

equation’, International Journal of Modern Physics A (2015),
VOL. 30 · NO. 07

[11] S. Duane et al., ‘Hybrid Monte Carlo’, Physics Letters B
(1987), VOL. 60 · NO. 1

[12] S. Brooks et al., ‘Handbook of Markov Chain Monte Carlo’,
Chapman and Hall (2014)

[13] I. G. Hughes and T. P. A. Hase,‘Measurements and their Un-
certainties’, Oxford University Press, Oxford (2010)

[14] Numba Python Compiler. Available at:
(https://numba.pydata.org) [Accessed 11 February 2022]

[15] M. D. Hoffman and A. Gelman, ‘The No-U-Turn Sam-
pler: Adaptively Setting Path Lengths in Hamiltonian Monte
Carlo’, Journal of Machine Learning Research (2014), VOL.
15 · NO. 47

[16] M. Girolami and B. Calderhead, ‘Riemann manifold
Langevin and Hamiltonian Monte Carlo methods’, Royal
Statistical Society Statistical Methodology Series B (2011),
VOL. 73 · NO. 2

6

R. Smith Application of Markov Chain Monte Carlo Algorithms in Solving Feynman Path Integrals

VIII. ERROR APPENDIX

The errors on individual valued expressions such as gen-
erating time were calculated using the equations in [I. G.
Hughes and T. P. A. Hase,‘Measurements and their Uncer-
tainties’, Oxford University Press, Oxford (2010)].

Errors in node position in Fig.9(a) were calculated us-
ing a bootstrapping method. A simple way of calculating
mean values and standard deviation would be to rerun the
algorithms many times, however this is computationally ex-
pensive. Bootstrapping provides a faster way of calculating
these errors.

The process is described in Fig.10. We start by consider-
ing the original data set of paths generated from a long run
of one of the algorithms. Next we sample with replacement
from the original data set to generate new data sets. We gen-
erate new data sets of the same length as the original for sig-
nificantly less computation time. From these new data sets
we calculate mean values of each point. From these, we can
calculate the average of the mean value at each point and a
standard deviation associated with each point. Standard er-
ror is not used in this case as no new information is gained
about the system when we resample. Otherwise we could
get arbitrarily small errors just by increasing the bootstrap
number.

One hundred new data sets were used to obtain the mean
and standard deviation. Experimentation showed that in-
creasing the number of new data sets did not significantly
change the mean values or standard deviations obtained.
This agrees with the literature [D. L. Goodhue et al., ‘Does
PLS have advantages for small sample size or non-normal
data?’ MIS Quarterly (2012), VOL. 36 · NO. 3]

FIG. 10: Explanation of bootstrapping where µ is the list of
means for each point, µ̄ is the mean between data sets at each

point and σ being the associated standard deviation at each point

7

